
Characterizing Performance Guarantees for Multiagent, Real-Time
Systems Operating in Noisy and Uncertain Environments

Damian Lyons
Computer & Information Science

Fordham University
Bronx, NY 10458

dlyons@cis.fordham.edu

Shu Jiang
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30332
sjiang@gatech.edu

Ronald Arkin
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30332
arkin@cc.gatech.edu

Prem Nirmal
Computer & Information Science

Fordham University
Bronx, NY 10458

prem.nirmal88@gmail.com

Stephen Fox
Computer & Information Science

Fordham University
Bronx, NY 10458

stfox88@gmail.com

Munzir Zafar
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30332
mzafar7@gatech.edu

ABSTRACT
Autonomous robots offer the potential to conduct Counter-
Weapons of Mass Destruction (C-WMD) missions in an efficient
and robust manner. However, to leverage this potential, a mission
designer needs to be able to determine how well a robot system
will operate in the noisy and uncertain environments that a C-
WMD mission may require. We are developing a software
framework for verification of performance guarantees for C-
WMD missions based on the MissionLab software system and a
novel process algebra approach to representing robot programs
and operating environments.
In this paper, we report on our initial research for the Defense
Threat Reduction Agency (DTRA) in understanding what is
required from a performance guarantee to give a mission designer
the information necessary to understand how well a robot program
will perform in a specific environment. We link this to prior work
on metrics for robot performance. Using a simple mission
scenario, we explore the implications of uncertainty in the four
components of the problem: the robot program, and the sensors,
actuators and environment with which the program is executed.

Categories and Subject Descriptors

I.2.9 Robotics; D.2.4 Software/Program Verification; D.2.6
Programming Environments

General Terms
Performance, Languages, Verification, Robotics.

Keywords
Performance guarantees, probabilistic and emergent robotic
systems.

1. INTRODUCTION
To effectively deploy an autonomous robot or robot team to
search and locate weapons of mass destruction, it is important to
have performance specifications and guarantees available for the
equipment. Because of the severe potential downside in these
mission-critical operations, the robot and its software must have
the best chance of succeeding given the environmental conditions
and other constraints in which it must operate. However, this
environment may be uncertain, and the software that operates the

robot or robot team may be probabilistic [20], emergent [1],
and/or multiagent [3]. Although tremendous strides have been
made in software verification (e.g., [9]), this high-impact problem
remains extremely challenging.
An important component of the solution is to understand what
performance guarantees are useful and possible for Counter-
Weapons of Mass Destruction (C-WMD) missions. In this paper
we present an overview of the system, which is based on the
MissionLab1 mission specification system [17], being developed
for integrating the generation and use of performance guarantees
as an iterative step in the design of robot software for C-WMD
missions. Using examples in this design framework, we analyze
what mission performance guarantees are of value to a mission
designer from the perspectives of understanding how well the
system will function and of understanding how to improve its
performance.
In the next section, we review related work in the area of
automatic verification of system performance, and in the
development of performance measurements and guarantees.
Section 3 reviews a selection of performance measurements. In
Section 4 we introduce a simplified example scenario to help
understand how uncertainty in sensor, actuator and environment
models influences the form of the performance guarantee, making
it quite different from the form of liveness and safety guarantees
typically seen in software verification. Section 5 then introduces
the architecture we have developed to integrate verification into
the MissionLab software system.

2. RELATED WORK

The field of formal specification and verification of software
systems (e.g., Hinchey et al. [7], Clark et al. [4]) has made
impressive progress. However, leveraging these results to validate
software for mobile robot systems has raised challenges.
Probabilistic [20] and behavior-based mobile robotics [1] employ
assumptions quite different from those used more generally in the

1 MissionLab is freely available for research and educational purposes at:

http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Characterizing Performance Guarantees for Multiagent, Real-Time
Systems Operating in Noisy and Uncertain Environments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology,School of Interactive
Computing,Atlanta,GA,30332

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Autonomous robots offer the potential to conduct Counter- Weapons of Mass Destruction (C-WMD)
missions in an efficient and robust manner. However, to leverage this potential, a mission designer needs to
be able to determine how well a robot system will operate in the noisy and uncertain environments that a
C-WMD mission may require. We are developing a software framework for verification of performance
guarantees for C-WMD missions based on the MissionLab software system and a novel process algebra
approach to representing robot programs and operating environments. In this paper, we report on our
initial research for the Defense Threat Reduction Agency (DTRA) in understanding what is required from
a performance guarantee to give a mission designer the information necessary to understand how well a
robot program will perform in a specific environment. We link this to prior work on metrics for robot
performance. Using a simple mission scenario, we explore the implications of uncertainty in the four
components of the problem: the robot program, and the sensors, actuators and environment with which
the program is executed.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

formal analysis of software. One key example is a reliance on
emergent behavior: even simple behavior-based systems exhibit
complex behavior when acting in a complex environment. This
means that formal analysis must include the control program and
models of the sensory and motor apparatus as well as environment
models.

Discrete-Event Control techniques (e.g., Ramadge [19], Kosecka
[10]) have been applied to this problem. Most use Finite State
Automata (FSA) as a modeling tool. However, FSA models can
suffer from state-space explosion when used to model the kind of
realistic search environments that occur in C-WMD. While prior
work addresses issues of noisy and uncertain applications, it does
so for problems at a relatively low sensorimotor level as compared
to for example, algorithms from data mining, artificial
intelligence, machine learning and complex adaptive systems
theory. Also, work in this area is focused on automatically
producing a control strategy or controller, whereas our focus is on
verifying software produced by some other means (in our case,
generated by a human operator using MissionLab). More recently
the discrete-event and hybrid approach has been extended to robot
path planning and motion control (e.g., Kress-Gazit [11]) with the
idea that a human provides a high-level, rich constraint
description in linear or interval temporal logic, and a controller is
automatically synthesized for these constraints. However, the
input constraint or constraints in these systems are quite complex
and themselves may now need verification.
The metrics for the performance measurement and guarantees of
behavior-based and probabilistic software systems have not been
standardized so far, although considerable work is proceeding in
the characterization of performance metrics for robot performance
[8]. This is the case not only with behavior-based systems but
with a broader category of systems that are required to carry out
specific tasks intelligently by interacting with real world
environments. Serious effort is underway towards standardization
of these metrics [16] but the challenges are many. Behavior-based
system requirements need to cover a wide spectrum of behaviors
ranging from simple tasks such as point-to-point locomotion to
relatively complex tasks such as human-robot interaction. The
expectations are growing regarding reliable and predictable
performance as new possibilities in design are being explored and
milestones are being achieved.
Urban search and rescue (USAR) is a domain that is being heavily
studied in this context. There are two groups of performance
metrics for the characterization of USAR systems that can be
broadly classified as system characterization and behavior
characterization. System characterization seeks accurate
specification of specific robot capabilities to facilitate direct
comparisons of different robotic platforms, and particular
configurations of similar robot models. The National Institute of
Standards and Technology (NIST) has taken a leadership role for
defining performance standards for USAR robots [8]. These
standards are categorized as human-robot interaction, system,
safety, mobility, etc., along with documentation for standard
reproducible test procedures. For our purposes, these system
metrics will primarily serve as specifications of particular
capabilities of the robot with the view of providing a guarantee to
the user regarding the ranges of behaviors the system provides,
before it is deployed in the real world in the context of a C-WMD
mission. Behavior characterization deals with the problem of
predicting performance guarantees for high-level tasks to be
carried out in uncertain, unstructured, and potentially hostile
environments such as navigation, localization and mapping, room
search, etc. Some related research exists in performance

characterization of higher-level algorithms, i.e., [18] [5], that is
intended for the comparison of different algorithmic performance.
This comparison would traditionally be done by demonstration
(empirical evaluation) instead of formal analysis. Such metrics,
however, may prove to be useful as they may improve the
expressiveness with which the operator can specify required
performance.

3. PERFORMANCE CRITERIA

An important requirement for any evaluation is the establishment
of the performance criteria which will serve as the basis for
specification and evaluation of the system in question. A method
is needed for defining performance goals which not only
accommodates various ranges of capabilities but in our case also
comfortably fits into the process algebra framework we use for
verification; this framework is based on that described in [12].
The absence of any published standards in this regard as well as
the growing needs for the capabilities of C-WMD/USAR systems
makes this an important area of investigation.
Due to the complexity associated with many formal methods, the
performance of control algorithms designed for robots has
traditionally been guaranteed only through empirical evaluation
and demonstration on real systems. Many performance criteria
have been devised to compare the performance of such algorithms
in this context [8]. Those criteria serve as a reference for defining
the mission performance criteria for our verification procedures.
Since we are targeting the USAR/C-WMD applications, a good
starting point is to identify the most common requirements in this
application area. These include navigation, exploration,
localization, mapping, search, and victim identification (among
other things). We can then refer to the large body of literature
available for the performance evaluation of the algorithms
designed for these high-level system goals. In navigation, for
example, [18] has proposed a set of useful performance metrics
along with their formulae and algorithms that could directly be
applicable to our framework. These include safety metrics (e.g.
mean obstacle distance), dimensional metrics (e.g. trajectory
length, time of completion) and smoothness metrics (e.g. bending
energy, smoothness of curvature). Similar propositions are made
in [5]. Related work is available for other areas of application as
well. Currently there is no universal agreement with regards to
these metrics, but it is hoped that the availability of common tools
and techniques to verify, validate, and formally prove
performance guarantees for high-level mission controllers will
lead to standardization of such performance characterization.
The metrics discussed above can be accommodated as part of our
framework, allowing the user to specify the mission goals and
expectations, i.e., specific mission criteria. In the case of multiple
metrics/criteria, the user may then choose to investigate whether a
mission is likely to experience a catastrophic failure or whether a
graceful degradation is more likely. This is a powerful feature of
our approach; we are not just interested in binary yes/no answers
regarding performance guarantees as might be typical for more
traditional software verification. The information that a mission
designer or operator needs to decide whether to deploy a robot
mechanism for a C-WMD mission includes not only the standard
concepts of mission completion („liveness‟) and safety, but also
information about how likely overall success might be, given the
noisy and uncertain environment for the mission.

4. ROBOT SCENARIOS

Performance criteria need to reflect the missions with which
robots will be tasked. In this section we look at several example
missions and consider how they impact what must go into a
performance criterion. In the first example the robot control
strategy is deterministic, where the sensor and actuators operate
with no noise and where there is no uncertainty in the
environment model.

4.1 Deterministic Scenario
A robot searching an area for a target executes actuator commands
to move through the search area, deploying its sensors to search
for the target.

 The robot program is deterministic.
 If the actuators always carry out the motion commands

exactly, then the robot program can always rely on
knowing where it is and hence where it has been.

 If the sensors always report the situation in the
environment with certainty, then obstacles, other agents
and the target can always be reliably detected.

 Finally, if the environment in which the robot operates
has no associated uncertainty, then the robot program
will always fulfill its mission requirements or it will
always fail.

This deterministic scenario does not reflect many actual operating
situations; however, it is necessary to include it as a base case. We
introduce a very straightforward example of a search task to drive
this and the succeeding scenarios. Consider a robot moving from
one location A to a second location B repeatedly as shown in
Figure 1.

Figure 1: Repeated Traverse Mission

The mission designer is interested in two kinds of guarantees
which we can broadly categorize using the traditional Liveness
and Safety terms:

1. Liveness: Will the robot achieve a mission objective?
Examples might include:

 Will the robot arrive at B? (Note that the
complexity of the control strategy or
environment model, or the accuracy of the
sensors or actuators, may still render this a
difficult verification problem.)

 Will the robot complete n traversals from A to
B?

 Will the robot complete n traversals from A to
B by time t?

2. Safety: Will the robot be free of error situations while
carrying out its mission object? Examples could
include:

 Will the robot avoid any and all obstacles
between A and B?

 Will the robot keep its power consumption
within safe levels at all times?

 Will the robot always read its radiation sensor
at a rate of 10Hz or higher.

Because there is no uncertainty in this example scenario, the
performance guarantees exhibit a binary nature; the robot program
will conform to the performance guarantee or it won‟t. This is
typical of the kind of verification constraints seen in general-
purpose software verification.

4.2 Nondeterministic Environment
Consider a modification of the previous example in which the
terrain between locations A and B has an element of uncertainty
with respect to its traversability. The actuators and sensors remain
deterministic in their performance and the search program itself is
deterministic.
 The environment in which the robot now has to operate is one
that can contain patches of terrain that are more difficult to
traverse and the robot will make less progress on these patches.
Any particular execution of the robot mission will encounter some
number of patches and be slowed as a result. Different executions
might encounter different numbers of patches, and hence exhibit a
range of performance.
This possible range of performance complicates the performance
guarantee beyond the binary case we have discussed before. Now
consider the liveness condition: Will the robot complete n
traversals from A to B in time t? In the deterministic scenario, the
robot would either always or never achieve this. However, in this
scenario, there will be some executions in which the robot does
achieve this performance and some in which it does not.

4.2.1 Expected performance
If we leverage the probabilistic concept of expected value, then
one approach is to ask:

 Is the number of expected traversals from location A to
location B in time t equal to n?

 Alternatively we can ask, is the expected time for the
robot to complete n traversals from location A to
location B equal to t?

Even though the environment is not deterministic, this form of the
performance guarantee maintains the easy binary structure of the
deterministic case. This increases the realism of the scenario
without complicating the way in which the mission designer has
to understand performance.
Nonetheless, this approach does hide the variation in performance
behind the concept of expected value. That variation may itself be
a useful and sometimes necessary tool for the mission designer.

4.2.2 Performance Confidence
In scenarios where the options are limited and the risks are high, a
mission designer may consider it reasonable to deploy a robot for
a mission even though the reasons to believe the robot will
succeed are somewhat slim. Therefore it is also important to make
the information about the variability in performance available to
the designer in a performance guarantee.

Returning to the traverse example, a designer can reasonably want
to know:

 how likely it is that the robot will complete n traversals
from location A to location B in time t given the
environment in which it has to carry out the mission.

This additional information is purchased at the cost of
complicating the performance guarantee to include a probability
that needs to be interpreted by the mission designer. A reasonable
interpretation might be: For a very large number of executions in
this environment, in what percentage of executions does the robot
complete n traversals from location A to location B in time t or
less?

4.3 Noisy Sensors and Actuators
Moving another step towards making our initial, deterministic
scenario more realistic, let us now consider a situation where the
robot sensors and actuators operate with noise. That is, the motion
command communicated to the robot by the robot program may
not always produce the same effect on the robot, and a sensor
reading taken during the identical environmental conditions may
yield different measurements. The robot program remains
deterministic.

4.3.1 Expected Performance
The consequence of this uncertainty for the repeated traversal
mission is that the robot may not always reach the locations A and
B, irrespective of terrain traversability. After some number of
traversals, the robot may conceivably have drifted far from A and
B. A mission designer might ask:

 After n traversals from A to B, will the expected
location of the robot be within a distance r of location
B?

This is an application of the expected value concept again, but in
this scenario to a spatial objective rather than a temporal one.

4.3.2 Performance Confidence
 In the scenarios in which knowledge of the variation in
performance is important, a designer may want to ask:

 After n traversals from A to B, how likely is the robot to
be within a distance r of location B, given the
environment in which the program is carried out.

This more complex performance criterion can be interpreted as
follows: after a large number of different executions of the
program in this environment, in what percentage of them was the
robot within a distance r of the location B.
Even this more complex form of the performance criterion hides
information. If the likelihood of being within r of location B is a
value p, then for the remaining 1-p cases we can ask, how badly
do they each fail to meet this criterion?

4.3.3 Performance Distribution
A description of the performance of the system in the cases in
which the robot program does not meet its performance criteria
contains valuable information. Let us consider that the sensor and
actuator models are now extended to include the case of sensor
and actuator failure. For the repeated traversal mission, not only
may the robot position drift from the goal locations, it may go
catastrophically wrong as the robot becomes stuck at a location.
Consider the graphs shown in Figure 2. The horizontal axis is
position and the vertical is the likelihood of attaining that position
given the environment in which the program is executed. The

location of the point B is indicated as a vertical line intersecting
the horizontal axis.

Figure 2: Two examples of spatial distributions

The figure shows examples of two different models for the
distribution of the spatial likelihood. The first, shown as a dotted
line, is one in which the likelihood falls off smoothly on either
side of the location B. If a threshold range r around location B is
selected, and the performance criterion asks the likelihood of the
robot being within r of location B, then in both of the example
distributions shown here, the likelihood is fairly large. However,
in the case of the distribution shown as a dotted line, the failure
cases are also locations close to location B. This is a model of a
favorable kind of failure.
This is in contrast to the distribution indicated as a solid line in
Figure 2. In that case, few of the failure cases, those cases outside
of the spatial interval r around B, are close to B. The failures in
this case are mostly severe failures.

4.4 Probabilistic Robot Program
The final level of complexity that we add to the simple scenario
introduced in this section is the inclusion of probabilistic
algorithms for control of the robot mechanism. Probabilistic
algorithms have been developed for many applications including
mapping and for robot localization. Let us consider that we add a
probabilistic localization algorithm, such as Monte-Carlo
Localization, to the robot program that controls the robot to carry
out the repeated traverse mission and explore what this implies for
the performance criterion.
The effect of a good probabilistic algorithm should be to improve
the performance of the robot in a noisy and uncertain
environment, and that of a poor algorithm, to reduce the
performance. The mission designer is only interested in whether
the robot can achieve location B, with constraints perhaps on the
time, the number of traversals and so forth. We note therefore that
although the addition of this probabilistic algorithm complicates
the mechanics of verification, it does not change the form of the
performance guarantee for the program.

5. INTEGRATING VERIFICATION AND

DESIGN

This performance guarantee component is being embedded into
the Missionlab software package, a comprehensive robot mission
development, simulation and execution environment. The robot
software designer builds her program within MissionLab using the

visual software authoring tools provided. MissionLab allows the
high-level mission that is generated to be tested in simulation first,
for verification of the user‟s intent, and then deployed to one or
more robot platforms for execution.
The newest components of MissionLab, which are based on the
formal modeling described in Lyons and Arkin [12], allow the
designer to carry out an additional software verification step to
establish performance guarantees for the user-defined mission
software. This can be very useful in mission-critical or emergency
response situations (including C-WMD missions such as finding,
containing, and neutralizing Chemical-Biological-Nuclear (CBN)
weapons), where it is not uncommon for robot operators to
customize the robot software, and even hardware, for the specific
mission; and failure of the mission is not an option in these
emergency situations.

Figure 3: MissionLab System with integrated
 verification module.

Figure 3 depicts the verification extension to the existing
MissionLab system. The extension provides an operator feedback
loop in the robot software design process. The process starts with
the designer creating a robot program in the usability-tested
MissionLab programming environment for a specific mission [6]
[14]. Once the high-level mission is specified, the designer may
simulate the robot behavior within MissionLab to verify correct
behavior according to the operator‟s intent. However, this
simulation cannot ever fully capture the interaction between the
robotic hardware and the real environment. To further guarantee
mission success in the real environment, the robot controller can
be validated using the verification module. The verification
module provides an output to the user indicating whether the
controller will meet the performance criteria specified by the
operator. If the controller cannot meet the specified criteria, the
designer may modify the robot program and the design loop
continues. Once it does satisfy the requisite criteria, the designer
may proceed to generate an executable for the robot and then
deploy it to undertake the mission.

5.1 Verification Module Inputs
The inputs to the verification module are the robot software
controller (specified in an intermediate language referred to as

CNL [17]), sensor, robot, and environment models, and the user-
specified performance criteria. In MissionLab, the robot controller
is specified visually by the designer at a very high level of
abstraction. An example of using cfgedit in MissionLab to design
a mission is shown in Figure 4. The models of sensors, robots and
the environment in which the robot program will execute can
simply be selected from existing libraries. These libraries are part
of the verification system and are constructed using the modeling
approach described in this paper. Figures 5-7 show examples of
the model libraries. Due to the limited space here, only a subset of
exemplar components of the libraries are shown.

Figure 4: Example of Mission Design in MissionLab

Figure 5: Example of sensor model library

Once the mission has been built, the designer selects from the
libraries of sensor and robot models that include a range of noise
and uncertainty characteristics (Figures 5 and 6). In a similar
fashion the designer composes an environment model by selecting
from a library of environments (Figure 7).

Figure 6: Example of robot model library

Figure 7: Example of environment model library

Figure 8: Overall architectural design showing user interaction

Based on the sensor, motor and environment choices made, the
designer is offered a selection of customizable verification
conditions and constraints. Verification includes the testing of the
combination of robot program with the environment model for

specific properties of safeness, liveness, and/or efficiency. The
result of this testing is the establishment of performance
guarantees for the software in the environment represented by that
environment model. If the result is unsatisfactory, in terms of
design objectives, the designer can use the feedback from the
verification to iteratively refine the robot program. In other words,
besides telling the designer “yes/no” that the robot program is
satisfactory vis-à-vis the mission, the verification module also
identifies potential causes of failure in the program and provides
the designer with this useful information. This process is
illustrated in Figure 8.

Figure 9: Verification Module Input and Output

5.2 Verification Module
The verification module is based on an approach introduced by
Lyons and Arkin [12] to present robot programs and the
environment in which they operate as networks of processes. The
programs and environments are specified and analyzed using
process algebra [13], which is a mathematical framework that
takes a compositional approach to describing process networks.
The semantics of a process in this framework is a port automaton:
an automaton augmented with the ability to send and receive
communication messages.
This approach has a number of important advantages:

 The robot program, sensor and actuator models, and
environment model can all be specified in one notation.

 The concurrent and communicating composition of
program, sensor and actuator models and environment is
the object of verification

 Noisy and incomplete information is represented as the
interaction of stochastic processes.

 The algebraic foundation supports verification by
automated algebraic reasoning rather than by „simulated
execution‟ or enumerative model checking, both of
which have significant computational complexity.

The verification module does not need to carry out a general
software verification step, e.g., [9]. In general purpose software
verification, the verification criterion can include a constraint on
any of the variables within the program and their value.
The performance guarantee in our application concerns the robot
and its operating environment, not the robot program directly.
Variables from the environment, such as the position of the robot,
time, and so forth, can be included in the performance guarantee.
However, variable values within the robot program are only of
interest in so far as they may affect these variables from the
environment.
Furthermore, the models for the robot and its environment,
selected by the mission designer to validate the program, come
from the robot, sensor and environment libraries mentioned

earlier. This means significant preprocessing can be carried out on
these models to simplify their composition with other models, and
their verification with a robot program.

6. CONCLUSION

In this paper, we described a software framework for validating
performance guarantees for C-WMD missions based on
extensions to the MissionLab mission specification system and on
a novel process algebra approach to represent robot programs and
operating environments. The key focus in the paper is on the
problem of what the performance guarantee should look like from
an operator‟s perspective. We reviewed the state of the art in
performance measurements for robots and presented candidate
measurements for the performance guarantee. Using a simple
example scenario, we looked at the implications of uncertainty in
sensor and actuators, as well as uncertainty in the environment, on
the form of the performance guarantee.
To be useful to a mission designer, the performance guarantee
must allow intuitive expression of the variance in performance of
the program due to uncertainty, including the use of the expected
value of environment variables, the likelihood of an
environmental variable being within a specified range, and, to
understand the severity of failure, the distribution of values for an
environment variable.
The study described in this paper serves as the basis for our on-
going work for the Defense Threat Reduction Agency in process
algebra verification of robot missions and in the construction of
the verification module for MissionLab.

7. ACKNOWLEDGMENTS

This work was supported by the Defense Threat Reduction
Agency, Basic Research Award # HDTRA1-11-1-0038.

8. REFERENCES
[1] Arkin, R.C., Behavior-based Robotics, MIT Press, 1998.

[2] Arkin, R.C., Diaz, J. Line of Sight Constrained Exploration

for Reactive Multiagent Robotic teams, AMC02, July 2002,
pp. 455-461.

[3] Balch, T. and Parker, L., Robot Teams: From Diversity to

Polymorphism, AK Peters, 2002.

[4] Clark, E., Grumberg, O., Peled, D., Model Checking. MIT
Press 1999.

[5] Daniele Calisi, Daniele Nardi Performance evaluation of

pure-motion tasks for mobile robots with respect to world

models, Autonomous Robots 27(4):465-481,2009.

[6] Endo, Y., MacKenzie, D., and Arkin, R.C., Usability
Evaluation of High-level User Assistance for Robot Mission
Specification, IEEE Transactions on Systems, Man, and

Cybernetics, Vol. 34, No. 2, pp. 168-180, May 2004.

[7] Hinchey M.G., and J.P. Bowen, High-Integrity System

Specification and Design, FACIT series, Springer-Verlag,
London, 1999.

[8] Jacoff, A., Messina, E., Standard Test Methods For Response
Robots, ASTM E54.08.01 Intelligent Systems Division,
NIST 2011

[9] Jhala, R., Majumdar, R., Software Model Checking, ACM

Computing Surveys V41 N4 Oct 2009.

[10] Kosecka, J. (1996). A Framework for Modeling and

Verifying Visually Guided Agents, Analysis and Experiments,
Ph. D. dissertation, Dept of Computer and Information
Science, University of Pennsylvania.

[11] Kress-Gazit, H., and G. J. Pappas, Automatic Synthesis of
Robot Controllers for Tasks with Locative Prepositions,
IEEE International Conference on Robotics and Automation,
Anchorage, Alaska, May 2010.

[12] Lyons, D., and Arkin, R., Towards Performance Guarantees
for Emergent Behavior, Proc. 2004 IEEE International

Conference on Robotics and Automation, New Orleans, LA,
May. 2004.

[13] Lyons, D.M., Representing and analyzing action plans as

networks of concurrent processes. IEEE Transactions on
Robotics and Automation, V9 N3 June 1993 pp.241-256.

[14] MacKenzie, D., and Arkin, R., Evaluating the Usability of
Robot Programming Toolsets, International Journal of

Robotics Research, Vol. 4, No. 7, April 1998, pp. 381-401.

[15] MacKenzie, D., Arkin, R.C., and Cameron, R., Multiagent

Mission Specification and Execution, Autonomous Robots,
Vol. 4, No. 1, Jan. 1997, pp. 29-52.

[16] Madhavan, Raj; Tunstel, Edward; Messina, Elena (Eds.),
Performance Evaluation and Benchmarking of Intelligent

Systems, ISBN 978-1-4419-0491-1, 2009.

[17] MissionLab v7.0 User Manual, available at
http://www.cc.gatech.edu/aimosaic/robot-
lab/research/MissionLab/mlab_manual-7.0.pdf

[18] Muñoz,N.D., and J. A. Valencia, N. Londoño, Evaluation of

Navigation of an Autonomous Mobile Robot, 2007.

[19] Ramadge R.J., and W. M. Wonham, 1987. Supervisory

control of a class of discrete event processes. SIAM J.
Control and Optimization, 25(1), pp. 206-230.

[20] Thrun, S., Burgard, W., and Fox, D., Probabilistic Robotics,
MIT Press 2005.

